Article 10421

Title of the article

Thermal diffusion and thermoelectric phenomena in mixtures of electrolytes’ aqueous solutions and colloidal solutions 

Authors

Aleksandr V. Sidorov, candidate of physical and mathematical sciences, associate professor, associate professor of the sub-department of physics, radio engineering and electronics, Yelets State University named after I. A. Bunin (28 Kommunarov street, Yelets, Lipetsk region, Russia), dirnusir@mail.ru
Vladimir M. Grabov, Doctor of physical and mathematical sciences, professor, professor of the sub-department of general and experimental physics, Herzen State Pedagogical University of Russia (48 river Moyki embankment, Saint Petersburg, Russia), vmgrabov@yandex.ru
Andrey A. Zaytsev, Candidate of physical and mathematical sciences, associate professor, associate  professor of the sub-department of physics, radio engineering and electronics, Yelets State University named after I.A. Bunin (28 Kommunarov street, Yelets, Lipetsk region, Russia), zaitsev@elsu.ru
Denis V. Kuznetsov, Candidate of physical and mathematical sciences, associate professor, associate professor of the sub-department of physics, radio engineering and electronics, Yelets State University named after I.A. Bunin (28 Kommunarov street, Yelets, Lipetsk region, Russia), kuznetcovdv007@mail.ru 

Index UDK

536, 538.9, 544 

DOI

10.21685/2072-3040-2021-4-10 

Abstract

Background. This work investigates thermoelectric phenomena in solutions of mixtures of electrolytes, which also include colloidal solutions. Thermoelectric and thermal diffusion phenomena in solutions of simple binary electrolytes have been studied in detail, and then there are not enough works devoted to the study of these phenomena in solutions of several electrolytes’ mixtures. Therefore, due to the possibility of using liquid electrolytes and their mixtures in thermoelectrochemical cells designed for direct conversion of low-potential thermal energy into electrical energy, these studies are relevant. Materials and methods. Standard methods are used to measure the coefficient of thermoelectric EMF of solutions of mixtures of ionic electrolytes and colloidal solutions. The analysis of the obtained experimental results is carried out within the framework of the thermodynamics of irreversible processes. Results and conclusions. Based on the analysis of the ratio for the thermodiffusion potential difference obtained in the framework of the thermodynamics of irreversible processes, it is shown that the value of the thermoelectric EMF of such solutions in the initial state is determined by the charged particles of the solution, which have the highest values of the product of the transfer number by the transfer heat. Experimental measurements in solutions of mixtures of ionic electrolytes, colloidal solutions confirm this assumption. It also follows from the analysis of experimental results that when the ratio between the components of an electrolyte mixture changes, its thermoelectric force tends to the value that the component of the mixture having the highest concentration has. This effect is due to the increasing value of the transfer numbers of charged particles with an increase in their concentration.

Key words

thermoelectric effect, thermal diffusion effect, ionic electrolyte, colloidal solution, heat of transfer 

 Download PDF
References

1. Salazar P.F., Kumar S., Cola B.A. Design and optimization of thermo-electrochemical cells. J. Appl. Electrochem. 2014;44:325–336.
2. Salez T.J., Bo Tao Huang, Rietjens M., Bonetti M. [et al.]. Can charged colloidal particles increase the thermoelectric energy conversion efficiency? Physical Chemistry
Chemical Physics. 2017;19:9409–9416.
3. Dupont M.F., MacFarlane D.R., Pringle J.M. Thermo-electrochemical cells for waste heat harvesting - progress and perspectives. Chemical Communications. 2017;53(47): 6288–6302.
4. Grabov V.M., Zaytsev A.A., Kuznetsov D.V., Sidorov A.V., Novikov I.V. Thermoelectrokinetic effect in weak aqueous solutions of electrolytes. Vestnik Moskovskogo
gosudarstvennogo tekhnicheskogo universiteta im. N.E. Baumana. Ser.: Estestvennye nauki = Bulletin of Bauman Moscow State Technical University. Series: Natural sciences. 2008;(3):112–123. (In Russ.)
5. Grabov V.M., Zaytsev A.A., Kuznetsov D.V., Sidorov A.V. Thermoelectric and thermoelectrokinetic phenomena in colloidal systems, model biological fluids of living organisms. Zhurnal tekhnicheskoy fiziki = Journal of technical physics. 2018;(10):1462– 1466. (In Russ.)
6. Grabov V.M., Zaytsev A.A., Kuznetsov D.V. Physical modeling of electro-magnetic phenomena in the convective zone of the Sun. Trudy Vserossiyskoy ezhegodnoy konferentsii po fizike Solntsa. RAN Glavnaya (Pulkovskaya) astronomicheskaya observatoriya = Proceedings of the All-Russian annual conference on Solar Physics. RAS Main (Pulkovo) Astronomical Observatory. Saint-Petersburg, 2012:211–214. (In Russ.)
7. Grabov V.M., Zaitsev A.A., Kuznetsov D.V., Sidorov A.V. Thermoelectric and Thermoelectrokinetic Phenomena in Liquid Biological Systems. Technical Physics. 2018;10:1415–1419.
8. Sidorov A.V., Grabov V.M., Zaytsev A.A., Kuznetsov D.V., Nartsissov D.A. Modeling of processes of formation of thermoelectrokinetic emf under conditions of unsteady heat and mass transfer in condensed media. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta = Bulletin of Voronezh State Technical University.
2017;13(7):113–121. (In Russ.)
9. Khaaze R. Termodinamika neobratimykh protsessov = Thermodynamics of irreversible processes. Moscow: Mir, 1967:544. (In Russ.)
10. Damaskin B.B., Petriy O.A. Tsirlina G.A. Elektrokhimiya = Electrochemistry. Moscow: Khimiya, 2001:624. (In Russ.)
11. Sukhotin A.M. Spravochnik po elektrokhimii = Reference book of electrochemistry. Leningrad: Khimiya, 1981:488. (In Russ.)
12. Cabani S., Gianni P., Mollica V., Lepori L. Group contributions to the thermodynamic properties of non-ionic organic solutes in dilute aqueous solution. Journal of Solution Chemistry. 1981;10:563–595.
13. Lenglet J., Bourdon A., Bacri J.C., Demouchy G. Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments. Phys. Rev. E.
2002;65:031408–031409.
14. Piazza R., Parola A. Thermophoresis in colloidal suspensions. Journal of Physics: Condensed Matter. 2008;20:153102–153113.
15. Dukhin S.S. Elektroprovodnost' i elektrokineticheskie svoystva kolloidnykh system = Electrical conductivity and electrokinetic properties of colloidal systems. Kiev: Naukova dumka. 1975:249.
16. Myagkikh O.A., Sidorov A.V., Kuznetsov D.V. Thermoelectric EMF in colloidal solutions in the presence of inorganic electrolytes. Shkola molodykh uchenykh: materialy
oblastnogo profil'nogo seminara po problemam estestvennykh nauk = School of young scientists: proceedings of the regional profile seminar on the problems of natural sciences. Lipetsk: Izd-vo LGPU im. P.P. Semenova-Tyan-Shanskogo. 2019:68–72. (In Russ.)

 

Дата создания: 19.01.2022 11:16
Дата обновления: 19.01.2022 13:44